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Abstract

We consider the problem of determining the singular stress and electric fields in a piezoelectric ceramic strip con-
taining a Griffith eccentric crack off the center line under anti-plane shear impact loading with the theory of linear
piezoelectricity. Laplace transform and Fourier transforms are used to reduce the problem to a pair of dual integral
equations, which are expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic
stress intensity factor and the dynamic energy release rate are obtained. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recently, the dynamic response and the failure modes of piezoelectric materials have attracted more and
more attention from many researchers. Shindo and Ozawa (1990) first investigated the steady response of a
cracked piezoelectric material under the action of incident plane harmonic waves. A finite crack in an
infinite piezoelectric material under anti-plane dynamic electro-mechanical impact was investigated by
Chen and Yu (1997) with a well established integral transform methodology. Axisymmetric vibration of
piezo-composite hollow cylinder was studied by Paul and Nelson (1996). The dynamic representation
formulas and fundamental solutions for piezoelectricity were proposed by Khutoryansky and Sosa (1995).
The dynamic response of a cracked dielectric medium under the action of harmonic waves in a uniform
electric field was studied by Shindo et al. (1996a). In their most recent work, Narita and Shindo (1998b)
investigated the scattering of Love waves by a surface-breaking crack normal to the interface in a piezo-
electric layer over an elastic half plane. Li and Mataga (1996a,b) studied the semi-infinite propagating crack
in a piezoelectric material with electrode boundary condition and vacuum boundary condition on the
crack surface, respectively. In the work, the transient dynamic electro-mechanical loads were taken into
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consideration. Shindo and Ozawa (1990) and Shindo et al. (1996b, 1997) considered the static anti-plane
fracture of a cracked piezoelectric strip. Kwon and Lee (1999) obtained the solution of piezoelectric
rectangular body with a center crack under anti-plane shear loading using integral transform method. Chen
(1998) obtained the solution of the infinite piezoelectric strip parallel to the crack under anti-plane shear
impact loading using integral transform method.

In this paper, we study the problem of a finite eccentric crack off the center line in a piezoelectric ceramic
strip under anti-plane shear impact loading based on the dynamic theory of linear electroelasticity. The
crack boundary condition proposed by Shindo et al. (1996b, 1997) is adopted. Laplace transform and
Fourier transform are used to reduce the problem to a pair of dual integral equations, which are expressed
to a Fredholm integral equation of the second kind. Numerical results for the dynamic stress intensity
factor and the dynamic energy release rate are shown graphically.

2. Problem statement and method of solution

Consider a piezoelectric body in the form of an infinitely long strip containing a finite eccentric crack off
the center line subjected to mechanical and electric Heaviside step pulse loadings, as shown in Fig. 1. We
will consider four possible cases of boundary conditions at the edges of the strip. A set of Cartesian co-
ordinates (x,y,z) is attached to the center of the crack. The piezoelectric ceramic strip poled with z-axis
occupies the region (—oo < x < 00, —hy <y < hy, 2h = hy + hy), and is thick enough in the z-direction to
allow a state of anti-plane shear impact. For convenience, we assume that upper (y = 0, thickness /;) and
lower (y <0, thickness /,) regions of the strip cracked with the eccentricity e, off the center line, have
different thickness but consist of the same material. The crack is situated along the virtual interface line
(—a<x<a, y=0). Because of the symmetry in geometry and loading, it is sufficient to consider only the
right-hand half body.

The piezoelectric boundary value problem is simplified considerably if we consider only the out-of-plane
displacement and the in-plane electric fields, such that

Uy = Uy, :07 uzi:Wi(x7y7t)a (1)

Exi - Exi(x7y7 t)7 Eyi = Eyi(x7y7 t)a Ezi = 07 (2)
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Fig. 1. A piezoelectric ceramic strip with an eccentric crack: definition of geometry and loading.
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where uy; and Ey; (k = x,y,z) are displacements and electric fields, respectively. Subscript i(i = 1,2) stands
for upper and lower regions, respectively.
In this case, the constitutive relations become

O—zji(xayv )= Caaw;; + 615¢i,_,-a (3)

Dji(xvya t) = el5wi,j - dll(:bi‘jv (4)

where o.; and D;;(j = x,y) are the stress components and electric displacements, respectively. cs4 is the
elastic modulus measured in a constant electric field, dy; is the dielectric permittivity measured at a constant
strain and e;s is the piezoelectric constant.

The dynamic anti-plane governing equations for piezoelectric materials are simplified to

azwi
C44V2W,' + 615V2¢,- =p P y (5)
ersViw; — du Vi, =0, (6)
where V2 = 0?/0x* + 0%/0y? and p is a material density.
Substituting Eq. (6) into Eq. (5), we can obtain the equation of a wave motion in the form:
1 o%*w;
2 i
i = — —7 7
Vv 3 or (7
where ¢; = \/p/p and p = cus + €5 /dy;.
The Laplace transform of Eq. (7) is in the form,
2
2. % p %
F =Ty 8
v i C% W: ) ( )
where
wi(x,y,p) = / wi(x, y, t)e ¥ dt, 9)
0
1 c+ioo
. - * " dp.
wilx, 1) = 5 /HOC w; (x,y,p)e” dp (10)
The superscript * stands for the Laplace transform domain.
A Fourier transform is applied to the Laplace transform of Egs. (6) and (8), and the results are
2 [ . Y i
witnp) =2 [ usple ™ + Ao, p)e? cos(on)ds + 2, (i)
0
* 2es [ —
¢; (x,y,p) == o [A1:(s,p)e™ + A (s, p)e”] cos(sx) ds
T ai Jo
2 > —sy S bOi
+ = [43i(s, p)e™™ + Aai(s, p)e”] cos(sx) ds — ;)’7 (12)
0

where r = (s> + p? /c%)l/ *and 4;;(j = 1-4) are the unknowns to be solved. ap; and by are real constants,
which will be determined from the edge loading conditions.

Substituting Eqgs. (11) and (12) into Egs. (3) and (4) in the Laplace transform domain, we have the
following:
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2 > 7w vy
Terp) = [l Au(s.p)e ™+ A(s,p)e”) cos(sn) d
0

2 [ ;

+eis p / s[=Asi(s,p)e™™ + Au(s, p)e”] cos(sx) ds + 0;07 (13)

0

. 2 [ e 5 doi

Dj(x,y,p) = —dn - s[A1:(s, p)e™ + Ay(s, p)e”] cos(sx)ds + > (14)

0

where

Coi = Casdoi — eis5bo;, dy; = eysao; + di1b;. (15)

The boundary conditions in the Laplace transform domain can be written as

m(xo )_0 (0<x<a)7
{Wl(xolf)—wz(xﬂm) (a<x < 00), (16)

E;i(xvovp) = E;c(x707p) (ng < a), (17)
¢T(X707p) = ¢Z(X707p) (a <x < OO),
O-;zl<x707p) sz(x O p) (18)
D, (x,0,p) = D),(x,0,p) (a<x < o0),
0y (¥, h,p) = 0,,(x, —hy, p) =2,
C 1 p 19
e {D;l(x,hl,p) = Dy (x, —ha,p) =22 (19)
y*l(xvhhp)_’y 2( h27 )__0;
Case 2 = > P 20
{Eyl(x7hl>p) = y ( ) h27 ) %7 ( )
O—;zl (x7h1ap) = O_;zz(x? _h27p) = %a
Case 3 { E:l(xah17p) = E;Z(x7 _hZap) = @a (21)
y*l(x’hl’ >—V 2( —ha, ) )7
Case 4 b3 yZ p 22
e {D;l (xvhla ) - ( h2> ) ng, ( )

where the subscript ¢ stands for the electric quantities in the crack. 79, Dy, 7, and E, are a uniform shear
traction, electric displacement, shear strain and electric field, respectively.

By applying the edge loading conditions, the constants ao; and by; as well as the unknowns in Eqgs. (13)
and (14) are evaluated as follows:

eisDy +di7o caDy — €157

Casel ay=—"——5—, bo=——-F——5—, 23

0 cadyy + €l 0 Caady) + €3 >

Case 2 ay =17y, bo=Ey, (24)
E

Case 3 ay = m, bo; = Ey, (25)

Ca4
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D —
Case 4 ap=7vy, b= 07615?0,
diy

Ayi(s,p) = M4y (s,p), An(s,p) = e 4x(s,p),

Asi(s,p) = €M Au(s,p), An(s,p) = e > Au(s, p).

The continuity condition of Eq. (18) led to the following relations between the unknowns:

All(S,P) _Alz(&p) :Azl(S,P) —Azz(S,P)a

As1(s,p) — Aza(s,p) = Aai (s, p) — Aaa (s, p).
It is convenient to use the following definitions:
Ani(s,p) — Ana(s,p) = Mu(s,p),  Asi(s,p) — Asa(s,p) = Ms(s, p).

Using Eqs. (27)—(31), we can obtain the following relations:

l_e—thz
An(s,p) = P M, (s, p),

e~ 2r(h+hy) _ o=2vh
[ ez Mals:p),

AIZ(Svp) =

e*z')’hl _ 6*23’(hl+h2)
AZI (S7p) = 1— e—2“/‘(h1+h2) MA (S7p)7

1 —e oM
Axn(s,p) = 1o M,(s,p),
1 _ e—2sh2

A3 (s, p) = 1= o 2thii) Mp(s, p),

e—2s(h1+hz) _ e—25h2
A32(S7p) = 1 — 6*25(/71*}72) MB(Svp)a

ef2xh| _ 672S<h|+hz)
A4l (Svp) = 1 — e—zs(h1+hz) MB(Sap)a

1 _ e—2sh1
Ap(s,p) = 1 e i Mp(s,p).

The electric potential in the crack can be derived in the form,

¢u(x,») 2% /0OC C(s,p) sinh(sy) cos(sx)ds (0<x < a),

1487

(40)

where C(s, p) is also unknown. Using Eq. (40) and the mixed boundary condition Eq. (17), we obtained the

following dual integral equations:
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/0OC sleisF (s, p)My(s, p) + diiG(s)Mp(s, p)] sin(sx)ds =0 (0<x < a),

/ Mp(s,p) cos(sx)ds =0 (a<x < c0), (41)
0
where
(1 + e 2h)(1 — e 2M) 2 tanh(yh,)
F = = 42
(sP) 1 — ¢ 2nih) tanh(yh;) + tanh(yhy) (42)
1 +e2Mh)(1 —e > 2 tanh(sh
G(S) — ( - ,)2(3(;, o ) — ( 2) ) (43)
1 — e 2Unth tanh(sk;) + tanh(sh,)
Using Eq. (41) and the mixed boundary condition (16), we obtain the following dual integral equations:
| sttt p)) costenas =3 (0 <)
0 p
/ M,(s,p) cos(sx)ds =0 (a<x < o0), (44)
0
where
1 1 —e 2 wy e (1 —e M
- | ||y 5~ ) —2vh
ron = [ [ e = (g Ja )
1 2 tanh(yh,) y els
= — = tanh(yh;) — == tanh 4
Cq4 tanh(yhl) thanh(yhz) 'uS tan (/hl) d11 tan (Shl) ’ ( 5)
e = e = ), (46)

Eq. (44) may be solved by using new function @' (¢, p) defined by

Mi(s,p) = /0 "2 phh(se) de, (47)

where Jy( ) is the zero-order Bessel function of the first kind.
Inserting Eq. (47) into Eq. (44), we can find that the auxiliary function ®](&,p) is given by a Fredholm
integral equation of the second kind in the form,

‘PT(é,p)+/00K(«f,f1,p)¢”[(n,p)dn =g%°, (48)
where
K(emp) =n [ sUfsp) ~ DM(onas) d. (49)
We introduce the following dimensionless variables and functions for numerical analysis:
s=S8/a, n=aH, ¢=aE, y=1T/a,
“(Ep) =T ¥i(Z,p) o (n.p) = £ ¥i(H,p) (50)

p) = =, np) = :
2p VE : 2p VH

Substituting Eq. (50) into Egs. (48) and (49), the following Fredholm integral equation of the second
kind is obtained:
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1
ViEp)+ [ LEH P p)dH = VE. (s1)
where
L(zH.p) = VEH | s{f(g,p) - 1}JO<SH>J0<SE> ds, (52)
0

N 1 2 tanh (I'%2) r h\ & hy

2 p)=— a “tanh (121 ) — S5 tanh (2 )], 53
f(a p) cas tanh (I'2) + tanh (I'%2) [uS an ( a) 4, ( a )] (53)
hI:h—e, h2:h+e. (54)

3. Field intensity factors and energy release rate

The mode III stress intensity factor in the Laplace transform domain, Kjj;(p), is determined by the
following formula:

) . c .
Ky (p) = xllrg\ﬂn(x — a)a}m.(x, 0,p) = ;Ox/na?’l (L, p). (55)

From the inverse Laplace transform of Eq. (55), we obtain the dynamic intensity factor in the physical
space in the form,

Klll = CoV/ TCaM(t), (56)
where
L W)
M(t) = — —P e 57
=55 [ e (57)

and the function ¥{(1,p) is obtained from Eq. (51).
Extending the traditional concept of stress intensity factor to other field variables, we have

yxzz—KTSWsin (g), yyz:KTsnrcos (g), (58)
Ex:—KT;sin<§), Ey:KT];cos<§>, (59)
ze——\/%sin<g>, aﬂ_\/%cos (g), (60)
Dx:—f%sin (§>’ Dy:le%cos (§>’ (61)

where K3, KE KT and KP are the dynamic strain intensity, electric field intensity, stress intensity and
electric displacement intensity factor, respectively. These field intensity factors can be obtained as follows:

K;

KS =21 QO mam (o), (62)
C44 C44

KE =0, (63)
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KT = Ky = Co\/ﬁM(I), (64)
e €15C
KP cflsKHI = \/_M( ), (65)

Evaluating the energy release rate J for the anti-plane case obtained by Narita and Shindo (1998a) on a
vanishingly small contour at a crack tip, we obtain

TgS 2
K'K> Ky  ma ,

J === ) (66)

4. Discussion
4.1. Case study

(1) The expressions of a dynamic energy release rate for the four possible boundary conditions are
obtained in the forms:

Case 1 J = g[M(1)], (67)
Case 2 J = [cuy, — eisEo)’ M (1)), (68)
Case 3 J =7 g[M(1)], (69)
Case 4 J = gu [ utrcdimastn]* 2 (70)

From Egs. (67)-(70), the dynamic energy release rates are dependent on the electric loading only under
constant strain loading and independent of it under constant stress loading and always have positive values.

(2) Since ¥i(1,p) = 1 and M(¢) = H(¢) in Egs. (51)—(53) and Eq. (57) as &y, h, — oo, the dynamic energy
release rate J,, for an infinite piezoelectric ceramic can be obtained from Eq. (66) in the form:

Ta ) 2
=—cy|H(?)|". 71
e lH (D) )
(3) The static solution of this problem can be derived from Eq. (51) by Tauberian theorem (Sneddon,

1972).

¥ (5) + / 1 L(EH)Y,(H)dH = VE, (72)

L(E,H) =VEH / N S{f(S/a) — 1}Jo(SH)Jo(SE) dsS, (73)
S 2 tanh(3hy) tanh($hy) h 2 sinh*(£S)

f<2) - tanh(3h;) + tanh(Shy) tanh (ES) B sinh(24S) (74)

(4) Since hy = hy = h as e — 0, we can find the solution for an infinite strip parallel to the center crack as
follows:
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L(E,H,p) = \/Eﬁ/oms{f(g,p) — 1}J0(SH)J0(S5)dS,

N 1 [ T h el S

(5) In the case of 4, — oo and & = h, we find the kernel function L(Z, H, p) in the form,

L(E,H,p) = \/ﬁ/oms{f(i,p) — 1}J0(SH)J0(S5)dS,

s 1 2 r A h
f(;,p) W[ugtanh (F;) —d—”tanh (SZ):|

" cus 1+ tanh

4.2. Effects of eccentricity and crack length

The dynamic stress intensity factor and the dynamic energy release rate, Eq. (51) is computed numer-
ically by Gaussian quadrature formulas. The inverse Laplace transformations of the intensity factors are
carried out by the numerical method described by Miller and Guy (1966). We consider PZT-5H piezoce-

ramic, and the material properties as follows (Pak, 1990):
cy = 3.53 x 10" (N/m?), ej5s=17.0 (C/m?), d); =151 x 107" (C/Vm),

where N, C,and V are the force in Newtons, charge in coulombs and the electric potential in volts, re-

spectively.
Figs. 2 and 3 display the variations of the normalized dynamic stress intensity factor Ky /co+/ma and the

normalized dynamic energy release rate J/J,, against c,¢/a with various a/h values at e/h = 0. The nor-
malized dynamic stress intensity factor and the normalized dynamic energy release rate rise rapidly with

3.00 l — T T 7T
/\ ‘
I eh=0.0 [\
! \ |
o0 N e ah =20 1
| \
b Y — ah=10
NN
2.00 —
' N ah=0.5

K||| / coVma

ooo b — 1L ‘ | | L N R
8.00 12.00 16.00

cit/a

Fig. 2. Dynamic stress intensity factor Ky /coy/na of PZT-5H for various a/h values.
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8.00 , l , : 1 | BN
\
r / \ e/h=0.0 b
so0 L | \ — — ah=20 |
I \ — - - ah=1.0
8 I A\ ———ah=05
2 400 | [ —
- ) \\
l /' N .
' S~
2.00 [ p N\ . T T O
/ A -
000 N R R R
0.00 4.00 8.00 12.00 16.00

ct/a

Fig. 3. Dynamic energy release rate of PZT-5H for various a/h values.

time, reaching a peak, then decrease in magnitude to reach static values. Peak values increase as a/k in-
creases. The larger the length a/h, the faster the time in arriving at peak values.

Figs. 4 and 5 show the variations of the normalized dynamic stress intensity factor and the normalized
dynamic energy release rate against ¢,f/a with various e/h values at a/h = 1.0. In this case, the trends with
time are similar to those of Figs. 2 and 3.

4.00 T T I T
L ah=1.0
500 ~ —eh=00 B
/ \ — - - eh=04
I;E , \ — — eh=08
S 20| | 7~ N\ —
= : ~
X | \
| N j
] , s e - - -
1.00 — U -
/
__/ .
0.00 1 ‘ L | 1 | 1
0.00 4.00 8.00 12.00 16.00

ct/a

Fig. 4. Dynamic stress intensity factor Ky /coy/na of PZT-5H for various e/h values.
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12.00 ] | , ] ,
L n ah=1.0 |
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s / \ — — —eh=08
> A ]
- | \
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400 - / N\ N\ g —
| T T T T T T T
y N
) S
’
0.00 1 | 1 1 . L
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Fig. 5. Dynamic energy release rate of PZT-5H for various e/h values.

5. Conclusions

The electroelastic problem of an eccentric crack off the center line in a transversely isotropic piezoelectric
ceramic strip under anti-plane impact shear was analyzed by the integral transform approach. The Fred-
holm integral equation is solved numerically. The traditional concept of linear elastic fracture mechanics is
extended to include the piezoelectric effects and the results are expressed in terms of the dynamic stress
intensity factor and the dynamic energy release rate. The dynamic energy release rates are dependent on the
electric loading only under constant strain loading and independent of it under constant stress loading and
always have positive values. The normalized dynamic stress intensity factor and energy release rate increase
when the crack length and the eccentricity of crack location increase. The larger the crack length and
eccentricity of crack location, the faster the time in arriving at peak values.
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