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Abstract

We consider the problem of determining the singular stress and electric ®elds in a piezoelectric ceramic strip con-

taining a Gri�th eccentric crack o� the center line under anti-plane shear impact loading with the theory of linear

piezoelectricity. Laplace transform and Fourier transforms are used to reduce the problem to a pair of dual integral

equations, which are expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic

stress intensity factor and the dynamic energy release rate are obtained. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recently, the dynamic response and the failure modes of piezoelectric materials have attracted more and
more attention from many researchers. Shindo and Ozawa (1990) ®rst investigated the steady response of a
cracked piezoelectric material under the action of incident plane harmonic waves. A ®nite crack in an
in®nite piezoelectric material under anti-plane dynamic electro-mechanical impact was investigated by
Chen and Yu (1997) with a well established integral transform methodology. Axisymmetric vibration of
piezo-composite hollow cylinder was studied by Paul and Nelson (1996). The dynamic representation
formulas and fundamental solutions for piezoelectricity were proposed by Khutoryansky and Sosa (1995).
The dynamic response of a cracked dielectric medium under the action of harmonic waves in a uniform
electric ®eld was studied by Shindo et al. (1996a). In their most recent work, Narita and Shindo (1998b)
investigated the scattering of Love waves by a surface-breaking crack normal to the interface in a piezo-
electric layer over an elastic half plane. Li and Mataga (1996a,b) studied the semi-in®nite propagating crack
in a piezoelectric material with electrode boundary condition and vacuum boundary condition on the
crack surface, respectively. In the work, the transient dynamic electro-mechanical loads were taken into
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consideration. Shindo and Ozawa (1990) and Shindo et al. (1996b, 1997) considered the static anti-plane
fracture of a cracked piezoelectric strip. Kwon and Lee (1999) obtained the solution of piezoelectric
rectangular body with a center crack under anti-plane shear loading using integral transform method. Chen
(1998) obtained the solution of the in®nite piezoelectric strip parallel to the crack under anti-plane shear
impact loading using integral transform method.

In this paper, we study the problem of a ®nite eccentric crack o� the center line in a piezoelectric ceramic
strip under anti-plane shear impact loading based on the dynamic theory of linear electroelasticity. The
crack boundary condition proposed by Shindo et al. (1996b, 1997) is adopted. Laplace transform and
Fourier transform are used to reduce the problem to a pair of dual integral equations, which are expressed
to a Fredholm integral equation of the second kind. Numerical results for the dynamic stress intensity
factor and the dynamic energy release rate are shown graphically.

2. Problem statement and method of solution

Consider a piezoelectric body in the form of an in®nitely long strip containing a ®nite eccentric crack o�
the center line subjected to mechanical and electric Heaviside step pulse loadings, as shown in Fig. 1. We
will consider four possible cases of boundary conditions at the edges of the strip. A set of Cartesian co-
ordinates �x; y; z� is attached to the center of the crack. The piezoelectric ceramic strip poled with z-axis
occupies the region (ÿ1 < x <1; ÿh26 y6 h1; 2h � h1 � h2), and is thick enough in the z-direction to
allow a state of anti-plane shear impact. For convenience, we assume that upper (y P 0, thickness h1) and
lower (y6 0, thickness h2) regions of the strip cracked with the eccentricity e, o� the center line, have
di�erent thickness but consist of the same material. The crack is situated along the virtual interface line
(ÿa6 x6 a; y � 0). Because of the symmetry in geometry and loading, it is su�cient to consider only the
right-hand half body.

The piezoelectric boundary value problem is simpli®ed considerably if we consider only the out-of-plane
displacement and the in-plane electric ®elds, such that

uxi � uyi � 0; uzi � wi�x; y; t�; �1�

Exi � Exi�x; y; t�; Eyi � Eyi�x; y; t�; Ezi � 0; �2�

Fig. 1. A piezoelectric ceramic strip with an eccentric crack: de®nition of geometry and loading.
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where uki and Eki �k � x; y; z� are displacements and electric ®elds, respectively. Subscript i�i � 1; 2� stands
for upper and lower regions, respectively.

In this case, the constitutive relations become

rzji�x; y; t� � c44wi;j � e15/i;j; �3�

Dji�x; y; t� � e15wi;j ÿ d11/i;j; �4�
where rzji and Dji�j � x; y� are the stress components and electric displacements, respectively. c44 is the
elastic modulus measured in a constant electric ®eld, d11 is the dielectric permittivity measured at a constant
strain and e15 is the piezoelectric constant.

The dynamic anti-plane governing equations for piezoelectric materials are simpli®ed to

c44r2wi � e15r2/i � q
o2wi

ot2
; �5�

e15r2wi ÿ d11r2/i � 0; �6�
where r2 � o2=ox2 � o2=oy2 and q is a material density.

Substituting Eq. (6) into Eq. (5), we can obtain the equation of a wave motion in the form:

r2wi � 1

c2
2

o2wi

ot2
; �7�

where c2 �
��������
l=q

p
and l � c44 � e2

15=d11.
The Laplace transform of Eq. (7) is in the form,

r2w�i �
p2

c2
2

w�i ; �8�

where

w�i �x; y; p� �
Z 1

0

wi�x; y; t�eÿpt dt; �9�

wi�x; y; t� � 1

2pi

Z c�i1

cÿi1
w�i �x; y; p�e pt dp: �10�

The superscript � stands for the Laplace transform domain.
A Fourier transform is applied to the Laplace transform of Eqs. (6) and (8), and the results are

w�i �x; y; p� �
2

p

Z 1

0

�A1i�s; p�eÿcy � A2i�s; p�ecy � cos�sx�ds� a0i

p
y; �11�

/�i �x; y; p� �
2

p
e15

d11

Z 1

0

�A1i�s; p�eÿcy � A2i�s; p�ecy � cos�sx�ds

� 2

p

Z 1

0

�A3i�s; p�eÿsy � A4i�s; p�esy � cos�sx�dsÿ b0i

p
y; �12�

where r � �s2 � p2=c2
2�1=2

and Aji �j � 1±4� are the unknowns to be solved. a0i and b0i are real constants,
which will be determined from the edge loading conditions.

Substituting Eqs. (11) and (12) into Eqs. (3) and (4) in the Laplace transform domain, we have the
following:
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r�yzi�x; y; p� � l
2

p

Z 1

0

c�ÿA1i�s; p�eÿcy � A2i�s; p�ecy � cos�sx�ds

� e15

2

p

Z 1

0

s�ÿA3i�s; p�eÿsy � A4i�s; p�esy � cos�sx�ds� c0i

p
; �13�

D�y�x; y; p� � ÿd11

2

p

Z 1

0

s�A1i�s; p�eÿsy � A2i�s; p�esy � cos�sx�ds� d0i

p
; �14�

where

c0i � c44a0i ÿ e15b0i; d0i � e15a0i � d11b0i: �15�

The boundary conditions in the Laplace transform domain can be written as

r�yzi�x; 0; p� � 0 �06 x < a�;
w�1�x; 0; p� � w�2�x; 0; p� �a6 x <1�;

�
�16�

E�xi�x; 0; p� � E�xc�x; 0; p� �06 x < a�;
/�1�x; 0; p� � /�2�x; 0; p� �a6 x <1�;

�
�17�

r�yz1�x; 0; p� � r�yz2�x; 0; p�
D�y1�x; 0; p� � D�y2�x; 0; p� �a6 x <1�;

�
�18�

Case 1
r�yz1�x; h1; p� � r�yz2�x;ÿh2; p� � s0

p ;

D�y1�x; h1; p� � D�y2�x;ÿh2; p� � D0

p ;

(
�19�

Case 2
c�yz1�x; h1; p� � c�yz2�x;ÿh2; p� � c0

p ;

E�y1�x; h1; p� � E�y2�x;ÿh2; p� � E0

p ;

(
�20�

Case 3
r�yz1�x; h1; p� � r�yz2�x;ÿh2; p� � s0

p ;

E�y1�x; h1; p� � E�y2�x;ÿh2; p� � E0

p ;

(
�21�

Case 4
c�yz1�x; h1; p� � c�yz2�x;ÿh2; p� � c0

p ;

D�y1�x; h1; p� � D�y2�x;ÿh2; p� � D0

p ;

(
�22�

where the subscript c stands for the electric quantities in the crack. s0; D0; c0 and E0 are a uniform shear
traction, electric displacement, shear strain and electric ®eld, respectively.

By applying the edge loading conditions, the constants a0i and b0i as well as the unknowns in Eqs. (13)
and (14) are evaluated as follows:

Case 1 a0i � e15D0 � d11s0

c44d11 � e2
15

; b0i � c44D0 ÿ e15s0

c44d11 � e2
15

; �23�

Case 2 a0i � c0; b0i � E0; �24�

Case 3 a0i � s0 � e15E0

c44

; b0i � E0; �25�
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Case 4 a0i � c0; b0i � D0 ÿ e15c0

d11

; �26�

A11�s; p� � e2ch1 A21�s; p�; A12�s; p� � eÿ2ch2 A22�s; p�; �27�

A31�s; p� � e2sh1 A41�s; p�; A32�s; p� � eÿ2sh2 A42�s; p�: �28�
The continuity condition of Eq. (18) led to the following relations between the unknowns:

A11�s; p� ÿ A12�s; p� � A21�s; p� ÿ A22�s; p�; �29�

A31�s; p� ÿ A32�s; p� � A41�s; p� ÿ A42�s; p�: �30�
It is convenient to use the following de®nitions:

A11�s; p� ÿ A12�s; p� � MA�s; p�; A31�s; p� ÿ A32�s; p� � MB�s; p�: �31�
Using Eqs. (27)±(31), we can obtain the following relations:

A11�s; p� � 1ÿ eÿ2ch2

1ÿ eÿ2c�h1�h2� MA�s; p�; �32�

A12�s; p� � eÿ2c�h1�h2� ÿ eÿ2ch2

1ÿ eÿ2c�h1�h2� MA�s; p�; �33�

A21�s; p� � eÿ2ch1 ÿ eÿ2c�h1�h2�

1ÿ eÿ2c�h1�h2� MA�s; p�; �34�

A22�s; p� � ÿ 1ÿ eÿ2ch1

1ÿ eÿ2c�h1�h2� MA�s; p�; �35�

A31�s; p� � 1ÿ eÿ2sh2

1ÿ eÿ2s�h1�h2� MB�s; p�; �36�

A32�s; p� � eÿ2s�h1�h2� ÿ eÿ2sh2

1ÿ eÿ2s�h1�h2� MB�s; p�; �37�

A41�s; p� � eÿ2sh1 ÿ eÿ2s�h1�h2�

1ÿ eÿ2s�h1�h2� MB�s; p�; �38�

A42�s; p� � ÿ 1ÿ eÿ2sh1

1ÿ eÿ2s�h1�h2� MB�s; p�: �39�

The electric potential in the crack can be derived in the form,

/�c�x; y� �
2

p

Z 1

0

C�s; p� sinh�sy� cos�sx�ds �06 x < a�; �40�

where C�s; p� is also unknown. Using Eq. (40) and the mixed boundary condition Eq. (17), we obtained the
following dual integral equations:
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Z 1

0

s�e15F �s; p�MA�s; p� � d11G�s�MB�s; p�� sin�sx�ds � 0 �06 x < a�;Z 1

0

MB�s; p� cos�sx�ds � 0 �a6 x <1�; �41�

where

F �s; p� � �1� eÿ2ch1��1ÿ eÿ2ch2�
1ÿ eÿ2c�h1�h2� � 2 tanh�ch2�

tanh�ch1� � tanh�ch2� ; �42�

G�s� � �1� eÿ2sh1��1ÿ eÿ2sh2�
1ÿ eÿ2s�h1�h2� � 2 tanh�sh2�

tanh�sh1� � tanh�sh2� : �43�

Using Eq. (41) and the mixed boundary condition (16), we obtain the following dual integral equations:Z 1

0

s�f �s; p�MA�s; p�� cos�sx�ds � p
2

c0

p
�06 x < a�;Z 1

0

MA�s; p� cos�sx�ds � 0 �a6 x <1�; �44�

where

f �s; p� � 1

c44

1ÿ eÿ2ch2

1ÿ eÿ2c�h1�h2�

� �
lc
s
�1

�
ÿ eÿ2ch1� ÿ e2

15

d11

1ÿ eÿ2sh1

1� eÿ2sh1

� �
�1� eÿ2ch1�

�
� 1

c44

2 tanh�ch2�
tanh�ch1� � tanh�ch2� l

c
s

tanh�ch1�
�

ÿ e2
15

d11

tanh�sh1�
�
; �45�

c0 � c�1�0 � c�2�0 : �46�
Eq. (44) may be solved by using new function U1

��n; p� de®ned by

MA�s; p� �
Z a

0

nU�1�n; p�J0�sn�dn; �47�

where J0� � is the zero-order Bessel function of the ®rst kind.
Inserting Eq. (47) into Eq. (44), we can ®nd that the auxiliary function U�1�n; p� is given by a Fredholm

integral equation of the second kind in the form,

U�1�n; p� �
Z a

0

K�n; g; p�U�1�g; p�dg � p
2

c0

p
; �48�

where

K�n; g; p� � g
Z 1

0

sff �s; p� ÿ 1gJ0�sg�J0�sn�ds: �49�

We introduce the following dimensionless variables and functions for numerical analysis:

s � S=a; g � aH ; n � aN; c � C=a;

U�1�n; p� �
p
2

c0

p
W�1�N; p�����

N
p ; U�1�g; p� �

p
2

c0

p
W�1�H ; p�����

H
p : �50�

Substituting Eq. (50) into Eqs. (48) and (49), the following Fredholm integral equation of the second
kind is obtained:

1488 J.W. Shin et al. / International Journal of Solids and Structures 38 (2001) 1483±1494



W�1�N; p� �
Z 1

0

L�N;H ; p�W�1�H ; p�dH �
����
N
p

; �51�
where

L�N;H ; p� �
��������
NH
p Z 1

0

S f
S
a
; p

� ��
ÿ 1

�
J0�SH�J0�SN�dS; �52�

f
S
a
; p

� �
� 1

c44

2 tanh C h2

a

ÿ �
tanh C h1

a

ÿ �� tanh C h2

a

ÿ � l
C
S

tanh C
h1

a

� ��
ÿ e2

15

d11

tanh S
h1

a

� ��
; �53�

h1 � hÿ e; h2 � h� e: �54�

3. Field intensity factors and energy release rate

The mode III stress intensity factor in the Laplace transform domain, K�III�p�, is determined by the
following formula:

K�III�p� � lim
x!a�

��������������������
2p�xÿ a�

p
r�yzi�x; 0; p� �

c0

p

������
pa
p

W�1�1; p�: �55�

From the inverse Laplace transform of Eq. (55), we obtain the dynamic intensity factor in the physical
space in the form,

KIII � c0

������
pa
p

M�t�; �56�
where

M�t� � 1

2pi

Z c�i1

cÿi1

W�1�1; p�
p

e pt dp; �57�

and the function W�1�1; p� is obtained from Eq. (51).
Extending the traditional concept of stress intensity factor to other ®eld variables, we have

cxz � ÿ
KS�������
2pr
p sin

h
2

� �
; cyz �

KS�������
2pr
p cos

h
2

� �
; �58�

Ex � ÿ KE�������
2pr
p sin

h
2

� �
; Ey � KE�������

2pr
p cos

h
2

� �
; �59�

rxz � ÿ KT�������
2pr
p sin

h
2

� �
; ryz � KT�������

2pr
p cos

h
2

� �
; �60�

Dx � ÿ KD�������
2pr
p sin

h
2

� �
; Dy � KD�������

2pr
p cos

h
2

� �
; �61�

where KS; KE; KT and KD are the dynamic strain intensity, electric ®eld intensity, stress intensity and
electric displacement intensity factor, respectively. These ®eld intensity factors can be obtained as follows:

KS � KIII

c44

� c0

c44

������
pa
p

M�t�; �62�

KE � 0; �63�
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KT � KIII � c0

������
pa
p

M�t�; �64�

KD � e15

c44

KIII � e15c0

c44

������
pa
p

M�t�; �65�

Evaluating the energy release rate J for the anti-plane case obtained by Narita and Shindo (1998a) on a
vanishingly small contour at a crack tip, we obtain

J � KTKS

2
� K2

III

2c44

� pa
2c44

c2
0�M�t��2: �66�

4. Discussion

4.1. Case study

(1) The expressions of a dynamic energy release rate for the four possible boundary conditions are
obtained in the forms:

Case 1 J � pa
2c44

s2
0�M�t��2; �67�

Case 2 J � pa
2c44
�c44c0 ÿ e15E0�2�M�t��2; �68�

Case 3 J � pa
2c44

s2
0�M�t��2; �69�

Case 4 J � pa
2c44

�c44d11�e2
15
�c0ÿe15D0

d11

h i2

�M�t��2: �70�

From Eqs. (67)±(70), the dynamic energy release rates are dependent on the electric loading only under
constant strain loading and independent of it under constant stress loading and always have positive values.

(2) Since W�1�1; p� � 1 and M�t� � H�t� in Eqs. (51)±(53) and Eq. (57) as h1; h2 !1, the dynamic energy
release rate J1 for an in®nite piezoelectric ceramic can be obtained from Eq. (66) in the form:

J1 � pa
2c44

c2
0�H�t��2: �71�

(3) The static solution of this problem can be derived from Eq. (51) by Tauberian theorem (Sneddon,
1972).

W1�N� �
Z 1

0

L�NH�W1�H�dH �
����
N
p

; �72�

L�N;H� �
��������
NH
p Z 1

0

Sff �S=a� ÿ 1gJ0�SH�J0�SN�dS; �73�

f
S
a

� �
� 2 tanh�Sa h1� tanh�Sa h2�

tanh�Sa h1� � tanh�Sa h2� � tanh
h
a

S
� �

ÿ 2 sinh2�ea S�
sinh�2 h

a S� : �74�

(4) Since h1 � h2 � h as e! 0, we can ®nd the solution for an in®nite strip parallel to the center crack as
follows:
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L�N;H ; p� �
��������
NH
p Z 1

0

S f
S
a
; p

� ��
ÿ 1

�
J0�SH�J0�SN�dS; �75�

f
S
a
; p

� �
� 1

c44

l
C
S

tanh C
h
a

� ��
ÿ e2

15

d11

tanh
S
a

� ��
: �76�

(5) In the case of h2 !1 and h1 � h, we ®nd the kernel function L�N;H ; p� in the form,

L�N;H ; p� �
��������
NH
p Z 1

0

S f
S
a
; p

� ��
ÿ 1

�
J0�SH�J0�SN�dS; �77�

f
S
a
; p

� �
� 1

c44

2

1� tanh C h
a

ÿ � l
C
S

tanh C
h
a

� ��
ÿ e2

15

d11

tanh S
h
a

� ��
: �78�

4.2. E�ects of eccentricity and crack length

The dynamic stress intensity factor and the dynamic energy release rate, Eq. (51) is computed numer-
ically by Gaussian quadrature formulas. The inverse Laplace transformations of the intensity factors are
carried out by the numerical method described by Miller and Guy (1966). We consider PZT-5H piezoce-
ramic, and the material properties as follows (Pak, 1990):

c44 � 3:53� 1010 �N=m2�; e15 � 17:0 �C=m2�; d11 � 151� 10ÿ10 �C=Vm�;
where N;C; and V are the force in Newtons, charge in coulombs and the electric potential in volts, re-
spectively.

Figs. 2 and 3 display the variations of the normalized dynamic stress intensity factor KIII=c0

������
pa
p

and the
normalized dynamic energy release rate J=J1 against c2t=a with various a=h values at e=h � 0. The nor-
malized dynamic stress intensity factor and the normalized dynamic energy release rate rise rapidly with

Fig. 2. Dynamic stress intensity factor KIII=c0

������
pa
p

of PZT-5H for various a=h values.
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time, reaching a peak, then decrease in magnitude to reach static values. Peak values increase as a=h in-
creases. The larger the length a=h, the faster the time in arriving at peak values.

Figs. 4 and 5 show the variations of the normalized dynamic stress intensity factor and the normalized
dynamic energy release rate against c2t=a with various e=h values at a=h � 1:0. In this case, the trends with
time are similar to those of Figs. 2 and 3.

Fig. 4. Dynamic stress intensity factor KIII=c0

������
pa
p

of PZT-5H for various e=h values.

Fig. 3. Dynamic energy release rate of PZT-5H for various a=h values.
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5. Conclusions

The electroelastic problem of an eccentric crack o� the center line in a transversely isotropic piezoelectric
ceramic strip under anti-plane impact shear was analyzed by the integral transform approach. The Fred-
holm integral equation is solved numerically. The traditional concept of linear elastic fracture mechanics is
extended to include the piezoelectric e�ects and the results are expressed in terms of the dynamic stress
intensity factor and the dynamic energy release rate. The dynamic energy release rates are dependent on the
electric loading only under constant strain loading and independent of it under constant stress loading and
always have positive values. The normalized dynamic stress intensity factor and energy release rate increase
when the crack length and the eccentricity of crack location increase. The larger the crack length and
eccentricity of crack location, the faster the time in arriving at peak values.
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